Abstract
In this study, trauma-specific risk factors of prolonged length of stay (LOS) in pediatric trauma were examined. Statistical and machine learning models were used to proffer ways to improve the quality of care of patients at risk of prolonged length of stay and reduce cost. Data from 27 hospitals were retrieved on 81,929 hospitalizations of pediatric patients with a primary diagnosis of trauma, and for which the LOS was >24 h. Nested mixed effects model was used for simplified statistical inference, while a stochastic gradient boosting model, considering high-order statistical interactions, was built for prediction. Over 18.7% of the encounters had LOS >1 week. Burns and corrosion and suspected and confirmed child abuse are the strongest drivers of prolonged LOS. Several other trauma-specific and general pediatric clinical variables were also predictors of prolonged LOS. The stochastic gradient model obtained an area under the receiver operator characteristic curve of 0.912 (0.907, 0.917). The high performance of the machine learning model coupled with statistical inference from the mixed effects model provide an opportunity for targeted interventions to improve quality of care of trauma patients likely to require long length of stay. Targeted interventions on high-risk patients would improve the quality of care of pediatric trauma patients and reduce the length of stay. This comprehensive study includes data from multiple hospitals analyzed with advanced statistical and machine learning models. The statistical and machine learning models provide opportunities for targeted interventions and reduction in prolonged length of stay reducing the burden of hospitalization on families.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.