Abstract

Two-year-old young spruce (Picea koraiensis Nakai) plants were grown in a climatic chamber during three summer months at double atmospheric CO2 concentration, sufficient content of soil inorganic nitrogen, and diurnal variation of temperature and illuminance, which simulate natural growth conditions. The control plants were grown in another climatic chamber under the same conditions, but at atmospheric CO2 concentration (350 ppm). CO2 exchange was measured with a Li-Cor 6400 infra-red gas analyzer in attached leaves placed in a climatic chamber in the morning under growth conditions and saturating light 1200 µE/(m2 s) in June, July, and August. In addition, dry weights of needles, leafless shoot parts of plant, fraction of thick (more than 0.5 mm in diameter) and thin (less than 0.5 mm in diameter) roots were recorded. The data were used to plot CO2 exchange rates as a function of carbon dioxide concentration and to calculate the increment of shoot and root phytomass. The maximum gas exchange rates in the treated and control plants similarly depended on CO2 concentration. The slope of the CO2 dependence curve, which corresponded to the kinetic characteristic Vm /KM of photosynthetic carboxylation, increased monotonically during the experiment. To the end of observation period, the proportion of thick roots in plant phytomass significantly increased in the plants grown at double atmospheric CO2 concentration, as compared to the control plants. Thus, the increase in the rate of photosynthetic gas exchange in plants grown for three months at double atmospheric CO2 concentration was only due to the increase in CO2, the substrate of Rubisco carboxylation activity. We found no differences in the CO2 characteristic for Rubisco between the treated and control plants. The ratio of needle to thin roots in the treated and control plants was similar and did not change during the experiment. The excess of photoassimilates in the treated, as compared to the control plants, was preferentially used for thick root growth. This result shows that photosynthesis in young spruce forests can deposit excess atmospheric CO2 in the soil horizon in the form of thick root phytomass.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call