Abstract

Dystonia has traditionally been considered as a basal ganglia disorder, but there is growing evidence that impaired function of the cerebellum may also play a crucial part in the pathogenesis of this disorder. We now demonstrate that chronic application of kainic acid into the cerebellar vermis of rats results in a prolonged and generalized dystonic motor phenotype and provide detailed characterization of this new animal model for dystonia. c-fos expression, as a marker of neuronal activation, was increased not only in the cerebellum itself, but also in the ventro-anterior thalamus, further supporting the assumption of a disturbed neuronal network underlying the pathogenesis of this disorder. Preproenkephalin expression in the striatum was reduced, but prodynorphin expression remained unaltered, suggesting secondary changes in the indirect, but not in the direct basal ganglia pathway in our model system. Hsp70 expression was specifically increased in the Purkinje cell layer and the red nucleus. This new rat model of dystonia may be useful not only for further studies investigating the role of the cerebellum in the pathogenesis of dystonia, but also to assess compounds for their beneficial effect on dystonia in a rodent model of prolonged, generalized dystonia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.