Abstract

Epstein–Barr virus (EBV)-based plasmids containing the origin of replication (oriP) and EBV nuclear antigen 1 (EBNA-1) are well known for the stable episomal maintenance in human cells. In order to clarify whether an EBV-based plasmid can be maintained stably in the porcine pancreatic cells which are the primary candidate sources of islet xenotransplantation, we constructed pEBVGFP encoding the green fluorescent protein (GFP). Monolayer culture of the porcine neonatal pancreatic cells was lipofected with pEBVGFP or pGFP which was derived from pEBVGFP by deleting out oriP and EBNA-1. pEBVGFP significantly prolonged GFP expression not only in human cell lines but also in the primary porcine pancreatic cells compared with pGFP. Interestingly, the duct cells that are believed as the pancreatic precursor cells were preferentially transfected and conveniently enriched among the mixed primary cell populations using a hygromycin B selection. To our knowledge, this is the first report suggesting the potential application of an EBV-based plasmid for the extended gene expression in the primary porcine pancreatic duct cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call