Abstract
Due to its extensive use as a painkiller, anti-inflammatory, and immune modulatory agent, as well as its effectiveness in treating severe COVID-19, dexamethasone, a synthetic glucocorticoid, has gained attention not only for its impact on public health but also for its environmental implications. Various studies have reported its presence in aquatic environments, including urban waters, surface samples, sediments, drinking water, and wastewater effluents. However, limited information is available regarding its toxic effects on nontarget aquatic organisms. Therefore, this study aimed to investigate the mechanism of toxicity underlying dexamethasone-induced brain damage in the bioindicator Danio rerio following long-term exposure. Adult zebrafish were treated with environmentally relevant concentrations of dexamethasone (20, 40, and 60 ng L-1) for 28 days. To elucidate the possible mechanisms involved in the toxicity of the pharmaceutical compound, we conducted a behavioral test battery (Novel Tank and Light and Dark tests), oxidative stress biomarkers, acetylcholinesterase enzyme activity quantification, histopathological analysis, and gene expression analysis using qRT-PCR (p53, bcl-2, bax, caspase-3, nrf1, and nrf2).The results revealed that the pharmaceutical compound could produce anxiety-like symptoms, increase the oxidative-induced stress response, decrease the activity of acetylcholinesterase enzyme, and cause histopathological alterations, including perineuronal vacuolization, granular and molecular layers deterioration, cell swallowing and intracellular spaces. The expression of genes involved in the apoptotic process (p53, bax, and casp-3) and antioxidant defense (nrf1 and nrf2) was upregulated in response to oxidative damage, while the expression of the anti-apoptotic gene bcl-2 was down-regulated indicating that the environmental presence of dexamethasone may pose a threat to wildlife and human health.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.