Abstract

Inhibitors of IMP dehydrogenase, such as mycophenolic acid (MPA) and mizoribine, which deplete cellular GTP, are used clinically as immunosuppressive drugs. The prolonged effect of such agents on insulin-secreting beta-cells (HIT-T15 and INS-1) was investigated. Both MPA and mizoribine inhibited mitogenesis, as reflected by [3H]thymidine incorporation. Cell number, DNA and protein contents, and cell (metabolic) viability were decreased by about 30%, 60%, and 80% after treatment of HIT cells with clinically relevant concentrations (e.g. 1 microg/ml) of MPA for 1, 2, and 4 days, respectively. Mizoribine (48 h) similarly induced the death of HIT cells. INS-1 cells also were damaged by prolonged MPA treatment. MPA-treated HIT cells displayed a strong and localized staining with a DNA-binding dye (propidium iodide), suggesting condensation and fragmentation of DNA, which were confirmed by detection of DNA laddering in multiples of about 180 bp. DNA fragmentation was observed after 24-h MPA treatment and was dose dependent (29%, 49%, and 70% of cells were affected after 48-h exposure to 1, 3, and 10 microg/ml MPA, respectively). Examination of MPA-treated cells by electron microscopy revealed typical signs of apoptosis: condensed and marginated chromatin, apoptotic bodies, cytosolic vacuolization, and loss of microvilli. MPA-induced cell death was almost totally prevented by supplementation with guanosine, but not with adenosine or deoxyguanosine, indicating a specific effect of GTP depletion. An inhibitor of protein isoprenylation (lovastatin, 10-100 microM for 2-3 days) induced cell death and DNA degradation similar to those induced by sustained GTP depletion, suggesting a mediatory role of posttranslationally modified GTP-binding proteins. Indeed, impeding the function of G proteins of the Rho family (via glucosylation using Clostridium difficile toxin B), although not itself inducing apoptosis, potentiated cell death induced by MPA or lovastatin. These findings indicate that prolonged depletion of GTP induces beta-cell death compatible with apoptosis; this probably involves a direct impairment of GTP-dependent RNA-primed DNA synthesis, but also appears to be modulated by small GTP-binding proteins. Treatment of intact adult rat islets (the beta-cells of which replicate slowly) induced a modest, but definite, death by apoptosis over 1- to 3-day periods. Thus, more prolonged use of the new generation of immunosuppressive agents exemplified by MPA might have deleterious effects on the survival of islet or pancreas grafts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call