Abstract
In order to achieve a prolonged delivery of nicotine to the systemic circulation, proliposomes containing nicotine base (NB–proliposomes) or nicotine hydrogen tartarate salt (NS–proliposomes) and a mixture of powdered nicotine hydrogen tartarate salt and sorbitol (1:9 mixture, MP) were administered intranasally to rats at a nicotine dose of 1 mg/kg. Proliposomes, lipid–sorbitol mixtures that form liposomes upon contact with water, were prepared according to previously established methods, and the mixture (MP) was prepared by mixing NS powder with sorbitol particles (105–350 μm in size). Nasal absorption of nicotine from these formulations was very rapid (i.e. less than 10 min was required to reach plasma peaks) and showed substantially sustained plasma nicotine levels compared to saline solutions of NB and NS, and previously reported nasal nicotine sprays. The AUC values from the proliposomes and MP were comparable to those from the saline solutions of NB and NS. However, the mean residence time (MRT) and plasma half-life (T1/2β) of nicotine in the present study were much larger than those from the saline solutions. Thus, a prolonged delivery of nicotine to systemic circulation via the application of proliposomes or MP intranasally appears feasible. NB–proliposomes exhibited the best characteristics in terms of the area under the plasma concentration (AUC), MRT and T1/2β of nicotine, which was followed by NS–proliposomes and MP. Retarded conversion of proliposomes and MP to liposomal emulsions and solution in the nasal cavity seems responsible, in part, for the sustained plasma nicotine concentrations, since the emulsions and solution yielded very short MRT and T1/2β of nicotine. In addition, reduced metabolism to cotinine from the proliposomes and MP was apparently responsible for the sustained plasma nicotine levels. These dosage forms of nicotine appear to circumvent some of the shortcomings of transdermal patches (i.e. long Tmax) and nasal sprays (i.e. short T1/2β and physicochemical instability).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.