Abstract

Olfactory bulbectomy is a well established animal model of depression. Neurochemical and behavioral alterations observed following olfactory bulbectomy, are due, in part, to the neurodegeneration of specific brain structures. Amygdaloid dysfunction in particular, is known to play a substantial role in the syndrome of the olfactory bulbectomized rat. The present study examined both short- and long-term alterations in immediate early gene expression, tyrosine hydroxylase and serotonin immunoreactivity, and classical silver staining, following olfactory bulbectomy in the basolateral amygdala. The results indicated no consistent change in Fos expression observed over the experimental period. Following bulbectomy, long term (up to 64 days post-lesion) Jun expression, not coincident with silver staining, was observed in the basolateral nucleus. The basolateral nucleus was also intensely immunoreactive for serotonin at this timepoint post-bulbectomy. Thus, following bulbectomy long term alterations in Jun expression occurs in the serotonin rich basolateral amygdala. As a site of action for antidepressant compounds, alterations at the immediate early gene level in this region may have implications both for the model, and antidepressant drug action therein.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call