Abstract

BackgroundExcessive mechanical loading of articular cartilage producing hydrostatic stress, tensile strain and fluid flow leads to irreversible cartilage erosion and osteoarthritic (OA) disease. Since application of high fluid shear to chondrocytes recapitulates some of the earmarks of OA, we aimed to screen the gene expression profiles of shear-activated chondrocytes and assess potential similarities with OA chondrocytes.Methodology/Principal FindingsUsing a cDNA microarray technology, we screened the differentially-regulated genes in human T/C-28a2 chondrocytes subjected to high fluid shear (20 dyn/cm2) for 48 h and 72 h relative to static controls. Confirmation of the expression patterns of select genes was obtained by qRT-PCR. Using significance analysis of microarrays with a 5% false discovery rate, 71 and 60 non-redundant transcripts were identified to be ≥2-fold up-regulated and ≤0.6-fold down-regulated, respectively, in sheared chondrocytes. Published data sets indicate that 42 of these genes, which are related to extracellular matrix/degradation, cell proliferation/differentiation, inflammation and cell survival/death, are differentially-regulated in OA chondrocytes. In view of the pivotal role of cyclooxygenase-2 (COX-2) in the pathogenesis and/or progression of OA in vivo and regulation of shear-induced inflammation and apoptosis in vitro, we identified a collection of genes that are either up- or down-regulated by shear-induced COX-2. COX-2 and L-prostaglandin D synthase (L-PGDS) induce reactive oxygen species production, and negatively regulate genes of the histone and cell cycle families, which may play a critical role in chondrocyte death.Conclusions/SignificanceProlonged application of high fluid shear stress to chondrocytes recapitulates gene expression profiles associated with osteoarthritis. Our data suggest a potential link between exposure of chondrocytes/cartilage to abnormal mechanical loading and the pathogenesis/progression of OA.

Highlights

  • Osteoarthritis (OA) is a chronic disease characterized by the degeneration or destruction of the articular cartilage tissue that covers and protects the moving joints

  • Consistent with the critical role of cyclooxygenase-2 (COX-2) in the development and/or progression of OA in vivo [11] and findings on the regulation of shear-induced reactive oxygen species (ROS) [9] and apoptosis in vitro [7], we identified a collection of genes that are regulated by shear-induced COX-2, including genes of the histone and cell cycle families, which may play a critical role in chondrocyte death

  • In view of accumulating evidence suggesting that prolonged application of high fluid shear recapitulates some of the earmarks of OA, we aimed to identify the differentially-regulated genes in human T/C-28a2 chondrocytes subjected to high fluid shear (20 dyn/cm2) versus static conditions (0 dyn/cm2)

Read more

Summary

Introduction

Osteoarthritis (OA) is a chronic disease characterized by the degeneration or destruction of the articular cartilage tissue that covers and protects the moving joints. Elegant modeling studies have shown that, in addition to hydrostatic pressure, chondrocytes of the superficial and transitional zones are subjected to high and low fluid flow, respectively, whereas cells of the middle and deep radial zones experience little to no fluid flow [2,3]. These observations suggest that fluid flow or fluid shear stress is a pathophysiologically relevant mechanical signal in cartilage biology. Excessive mechanical loading of articular cartilage producing hydrostatic stress, tensile strain and fluid flow leads to irreversible cartilage erosion and osteoarthritic (OA) disease. Since application of high fluid shear to chondrocytes recapitulates some of the earmarks of OA, we aimed to screen the gene expression profiles of shear-activated chondrocytes and assess potential similarities with OA chondrocytes

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call