Abstract
In primary rat hepatocytes, prolonged activation of the p42/44 mitogen-activated protein kinase (MAPK) pathway is associated with a decrease in DNA synthesis and increased expression of the cyclin-dependent kinase inhibitor (CKI) proteins p21Cip-1/WAF1 and p16INK4a. To evaluate the relative importance of these CKIs in mediating this response, we determined the impact of prolonged MAPK activation on DNA synthesis in primary cultures of hepatocytes derived from mice embryonically deleted (null) for either p21Cip-1/WAF1 or p16INK4a. When MAPK was activated in wild-type mouse hepatocytes for 24 h, via infection with a construct to express an inducible oestrogen receptor-Raf-1 fusion protein (DeltaRaf:ER), the expression of p21Cip-1/WAF1 and p16INK4a CKI proteins increased, cyclin-dependent kinase 2 (cdk2) and cdk4 activities decreased, and DNA synthesis decreased. Inhibition of RhoA GTPase function increased the basal expression of p21Cip-1/WAF1 and p27Kip-1 but not p16INK4a, and enhanced the ability of MAPK signalling to decrease DNA synthesis. Ablation of the expression of CCAATT enhancer-binding protein alpha (C/EBPalpha), but not of the expression of C/EBPbeta, decreased the ability of MAPK signalling to induce p21Cip-1/WAF1. When MAPK was activated in p16INK4a-null hepatocytes for 24 h, the expression of p21Cip-1/WAF1 increased, cdk2 and cdk4 activities decreased and DNA synthesis decreased. In contrast with these findings, prolonged activation of the MAPK pathway in hepatocytes from p21Cip-1/WAF1-null mice enhanced cdk2 and cdk4 activities and caused a large increase in DNA synthesis, despite elevated expression of p16INK4a. Inhibition of RhoA GTPase activity in p21Cip-1/WAF1-null cells partly blunted both the basal levels of DNA synthesis and the ability of prolonged MAPK signalling to increase DNA synthesis. Expression of anti-sense p21Cip-1/WAF1 in either wild-type or p16INK4a-null hepatocytes decreased the ability of prolonged MAPK signalling to increase the expression of p21Cip-1/WAF1, and permitted MAPK signalling to increase both cdk2 and cdk4 activities and DNA synthesis. These results argue that the ability of prolonged MAPK signalling to inhibit DNA synthesis in hepatocytes requires the expression of p21Cip-1/WAF1, and that the increased expression of p16INK4a has a smaller role in the ability of this stimulus to mediate growth arrest. Our results also suggest that RhoA function can modulate DNA synthesis in primary hepatocytes via the expression of p21Cip-1/WAF1 and p27Kip-1.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.