Abstract

The mechanism and role of phospholipase D (PLD) activation by platelet-activating factor (PAF) were examined with Chinese hamster ovary cells stably expressing wild-type PAF receptor (WT-H cells) and truncated PAF receptor lacking the C-terminal cytoplasmic tail (D-H cells). Treatment of D-H cells with PAF resulted in the rapid formation of Ins(1,4,5)P3, which was followed by a sustained phase for more than 10 min. In these cells, PAF-induced PLD activation lasted for more than 20 min. In contrast, PLD activation in WT-H cells was transient. PAF stimulation caused the biphasic formation of 1,2-diacylglycerol (DG) in both types of cell. The first phase was rapid and transient, coinciding with the Ins(1,4,5)P3 peak. The second sustained phase of DG formation was attenuated by butanol, which produces phosphatidylbutanol at the expense of phosphatidic acid (PA) by transphosphatidylation activity of PLD, and by propranolol, a selective inhibitor for PA phosphohydrolase catalysing the conversion of PA into DG. The DG level returned nearly to basal at 20 min after PAF stimulation in WT-H cells, whereas in D-H cells the elevated DG level was sustained for more than 20 min. The profile of translocation of protein kinase Calpha (PKCalpha) to membrane was similar to that of DG formation. In WT-H cells, PKCalpha was transiently associated with membranes and then returned to the cytosol. However, in D-H cells PKCalpha was rapidly translocated to and remained in membranes for more than 20 min. Butanol suppressed this sustained translocation of PKCalpha. Furthermore the mRNA levels of c-fos and c-jun by PAF in WT-H cells were much lower than those in D-H cells. Propranolol and butanol at concentrations that inhibited the formation of DG suppressed the PAF-induced mRNA expression of c-fos and c-jun. Taken together, the prolonged PLD activation in D-H cells confirmed a primary role for phospholipase C/PKC in PLD activation by PAF. Furthermore the results obtained here suggest that sustained PLD activation in turn leads to chronic activation and membrane translocation of PKCalpha, which might play an important role in the expression of c-fos and c-jun.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.