Abstract

Immunological rejection is the major cause of human corneal allograft failure. We hypothesized that local production of IL-4 or the p40 subunit of IL-12 (p40 IL-12) by the grafted cornea might prolong allograft survival. Replication-deficient adenoviral vectors encoding ovine IL-4 or p40 IL-12 and GFP were generated and used to infect ovine corneas ex vivo. mRNA for each cytokine was detected in infected corneas, and the presence of secreted protein in corneal supernatants was confirmed by bioassay (for IL-4) or immunoprecipitation (for p40 IL-12). Sheep received uninfected or gene-modified orthotopic corneal allografts. Postoperatively, untreated corneas (n = 13) and corneas expressing GFP (n = 6) were rejected at a median of 21 and 20 days, respectively. Corneas expressing IL-4 (n = 6) underwent rejection at 18.5 days (p > 0.05 compared with controls) and histology demonstrated the presence of eosinophils. In contrast, corneas expressing p40 IL-12 (n = 9) showed prolonged allograft survival (median day to rejection = 45 days, p = 0.003). Local intraocular production of p40 IL-12 thus prolonged corneal graft survival significantly, but local production of the prototypic immunomodulatory cytokine IL-4 induced eosinophilia, inflammation, and rejection. These findings have important implications for the development of novel strategies to improve human corneal graft survival.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.