Abstract
In this paper—as a case study—we present a systematic study of gender bias in machine translation with Google Translate. We translated sentences containing names of occupations from Hungarian, a language with gender-neutral pronouns, into English. Our aim was to present a fair measure for bias by comparing the translations to a real-world oriented non-biased machine translator. When assessing bias, we used the following reference points: (1) the distribution of men and women among occupations in both the source and the target language countries, as well as (2) the results of a Hungarian survey that examined if certain jobs are generally perceived as feminine or masculine. We also studied how expanding sentences with adjectives referring to occupations affects the gender of the translated pronouns.As a result, we found bias against both genders, but biased results against women are much more frequent. Translations are closer to our perception of occupations than to objective occupational statistics. Finally, occupations have a greater effect on translation than adjectives.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.