Abstract

In plants, proline accumulation in cells is a common response to alleviate the stress caused by water deficits. It has been shown that foliar proline spraying, as well as its overaccumulation in transgenic plants can increase drought tolerance, as proline metabolism plays important roles in cell redox balance and on energy dissipation pathways. The aim of this work was to evaluate the role of exogenous proline application or its endogenous overproduction as a potential mechanism for energy dissipation. For this, wild-type and VaP5CSF129A transgenic tobacco plants were sprayed with proline (10 mM) and submitted to water deficit. Changes in plant physiology and biochemistry were evaluated. Transcriptional changes in the relative expression of genes involved in proline synthesis and catabolism, NAD (P)-dependent malate dehydrogenase (NAD(P)-MDH), alternative oxidase (AOX), and VaP5CSF129A transgene were measured. Exogenous proline reduced the negative effects of water deficit on photosynthetic activity in both genotypes; with the transgenic plants even less affected. Water deficit caused an increase in the relative expression of proline biosynthesis genes. On the other hand, the expression of catabolism genes decreased, primarily in transgenic plants. Exogenous proline reduced activity of the NADP-MDH enzyme and decreased expression of the AOX and NADP-MDH genes, mainly in transgenic plants under water stress. Finally, our results suggest that proline metabolism could act as a complementary/compensatory mechanism for the energy dissipation pathways in plants under water deficit.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call