Abstract

A GGGGCC hexanucleotide repeat expansion in the C9orf72 gene is linked to the pathogenesis of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) (C9-ALS/FTD). Unconventional translation of the hexanucleotide repeat expansion generates five dipeptide repeat proteins (DPRs). The molecular mechanism underlying the DPR-linked neurotoxicity is under investigation. In this study, using cell-based models, we show that poly-proline-arginine DPR (poly-PR), the most neurotoxic DPR in vitro, binds to adenosine deaminase acting on RNA (ADAR)1p110 and ADAR2 and inhibits their RNA editing activity. We further show that poly-PR impairs cellular stress response that is mediated by ADAR1p110. These results together suggest that the poly-PR-mediated inhibition of the ADAR activity contributes to C9-ALS/FTD-linked neurotoxicity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call