Abstract

Paroxysmal nocturnal hemoglobinuria (PNH) results from somatic mutations of the X-linked PIG-A (phosphatidylinositol glycan-class A) gene, which occurs on a hematopoietic stem cell level, leading to a proportion of blood cells being deficient in all glycosylphosphatidylinositol (GPI)-anchored surface proteins. Although these GPI-deficient cells can explain many of the clinical symptoms of PNH, the pathogenesis of PNH is still somewhat obscure and many questions remain. To assess the hematopoietic defect involved in PNH, CD34+ CD59+ (normal phenotype hematopoietic stem/progenitor) and CD34+ CD59- (PNH phenotype) cells from PNH patients (n = 16) and CD34+ CD59+ cells from healthy volunteers (n = 10) were sorted as single cells into 96-well flat-bottom culture plates containing culture medium supplemented with stem cell factor, interleukin (IL)-3, erythropoietin, granulocyte-macrophage-colony-stimulating factor (GM-CSF), G-CSF, IL-6, thrombopoietin, and Flt-3 ligand. We found that the single PNH CD34+ CD59- cells had a growth advantage over the single CD34+ CD59+ cells to some extent, but they both had impaired growth abilities compared with CD34+ cells from healthy volunteers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.