Abstract

Oligodendrocytes myelinate axons in the vertebrate central nervous system. It would, therefore, make sense if axons played a part in controlling the number of oligodendrocytes that develop in a myelinated tract. Although oligodendrocytes themselves normally do not divide, the precursor cells that give rise to them do. Here we show that the proliferation of oligodendrocyte precursor cells in the developing rat optic nerve depends on electrical activity in neighbouring axons, and that this activity-dependence can be circumvented by experimentally increasing the concentration of platelet-derived growth factor, which is present in the optic nerve and stimulates these cells to proliferate in culture. These findings suggest that axonal electrical activity normally controls the production and/or release of the growth factors that are responsible for proliferation of oligodendrocyte precursor cells and thereby helps to control the number of oligodendrocytes that develop in the region.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.