Abstract
BackgroundAs part of the effort to develop an enterotoxigenic Escherichia coli (ETEC) human challenge model for testing new heat-stable toxin (ST)-based vaccine candidates, a controlled human infection model study based on the ST-producing ETEC strain TW11681 was undertaken. Here, we estimate stool TW11681 DNA concentration and evaluate its association with dose, clinical symptoms, and with levels of antibodies targeting the CfaB subunit of the ETEC Colonization Factor Antigen I and the E. coli mucinase YghJ. Nine volunteers ingested different doses of the strain and were subsequently followed for 9 days with daily stool specimen collection and clinical examination. Stool DNA was purified by using a newly developed microplate-based method, and DNA originating from TW11681 was quantified by using a probe-based quantitative PCR assay. Antibody levels against CfaB and YghJ were measured in serum collected before and 10 and 28 days after TW11681 was ingested by using a bead-based flow cytometry immunoassay.ResultsFor 6 of the 9 volunteers, the stool TW11681 DNA concentration increased sharply a median 3.5 (range 2–5) days after dose ingestion, peaking at a median of 5.4% (range 3.3–8.2%) of the total DNA in the specimen. The concentration then fell sharply during the subsequent days, sometimes even before the onset of antibiotic treatment. The size or timing of these proliferation peaks did not seem to be associated with the number of TW11681 bacteria ingested, but the 2 volunteers who developed diarrhea and all five who experienced abdominal pains or cramps had these peaks. The 3 volunteers who did not have the proliferation peaks experienced fewer symptoms and they generally had relatively low CfaB- and YghJ-specific antibody levels before ingesting the strain and subsequently weaker responses than the other volunteers afterwards.ConclusionsSince the lack of proliferation peaks appears to be associated with fewer clinical symptoms and lower serum antibody responses to virulence factors of the infecting strain, it may be important to account for proliferation peaks when explaining results from controlled human infection model studies and for improving the accuracy of protective efficacy estimates when testing new ETEC diarrhea vaccine candidates.
Highlights
As part of the effort to develop an enterotoxigenic Escherichia coli (ETEC) human challenge model for testing new heat-stable toxin (ST)-based vaccine candidates, a controlled human infection model study based on the ST-producing ETEC strain TW11681 was undertaken
Nine volunteers were followed for 9 days starting from the time of ingesting 1 × 106, 1 × 107 or 1 × 108 colonyforming units (CFUs) of TW11681, and stool samples were successfully collected from 72 of these 81 volunteerdays (Fig. 1)
We found that the volunteers who were experimentally infected with ETEC strain TW11681 either had or had not a sharp and substantial increase in stool TW11681 excretion during follow-up, and that the substantially increased excretion sometimes dropped even before onset of the antibiotic treatment
Summary
As part of the effort to develop an enterotoxigenic Escherichia coli (ETEC) human challenge model for testing new heat-stable toxin (ST)-based vaccine candidates, a controlled human infection model study based on the ST-producing ETEC strain TW11681 was undertaken. We estimate stool TW11681 DNA concentration and evaluate its association with dose, clinical symptoms, and with levels of antibodies targeting the CfaB subunit of the ETEC Colonization Factor Antigen I and the E. coli mucinase YghJ. ETEC colonizes parts of the small intestine where it attaches itself to the intestinal wall cell surface, and most ETEC produce colonization factors, which are surface appendages that help to stabilize the attachment [5]. Efforts to develop effective ETEC vaccines are mainly focused on inducing anti-colonizing immunity through immunization with the main ETEC colonization factor antigens [7]. Efforts have been made to develop vaccines based on ST itself [8, 9]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.