Abstract

BackgroundMajor, long-term environmental changes are projected in the Southern Ocean and these are likely to have impacts for marine predators such as the Adélie penguin (Pygoscelis adeliae). Decadal monitoring studies have provided insight into the short-term environmental sensitivities of Adélie penguin populations, particularly to sea ice changes. However, given the long-term nature of projected climate change, it is also prudent to consider the responses of populations to environmental change over longer time scales. We investigated the population trajectory of Adélie penguins during the last glacial-interglacial transition to determine how the species was affected by climate warming over millennia. We focussed our study on East Antarctica, which is home to 30 % of the global population of Adélie penguins.MethodsUsing mitochondrial DNA from extant colonies, we reconstructed the population trend of Adélie penguins in East Antarctica over the past 22,000 years using an extended Bayesian skyline plot method. To determine the relationship of East Antarctic Adélie penguins with populations elsewhere in Antarctica we constructed a phylogeny using mitochondrial DNA sequences.ResultsWe found that the Adélie penguin population expanded 135-fold from approximately 14,000 years ago. The population growth was coincident with deglaciation in East Antarctica and, therefore, an increase in ice-free ground suitable for Adélie penguin nesting. Our phylogenetic analysis indicated that East Antarctic Adélie penguins share a common ancestor with Adélie penguins from the Antarctic Peninsula and Scotia Arc, with an estimated age of 29,000 years ago, in the midst of the last glacial period. This finding suggests that extant colonies in East Antarctica, the Scotia Arc and the Antarctic Peninsula were founded from a single glacial refuge.ConclusionsWhile changes in sea ice conditions are a critical driver of Adélie penguin population success over decadal and yearly timescales, deglaciation appears to have been the key driver of population change over millennia. This suggests that environmental drivers of population trends over thousands of years may differ to drivers over years or decades, highlighting the need to consider millennial-scale trends alongside contemporary data for the forecasting of species’ abundance and distribution changes under future climate change scenarios.

Highlights

  • Major, long-term environmental changes are projected in the Southern Ocean and these are likely to have impacts for marine predators such as the Adélie penguin (Pygoscelis adeliae)

  • Genetic diversity was high for the hypervariable region (HVR), with 85 polymorphic sites in the 642 bp fragment, unique haplotypes recorded from the individuals sequenced, and a mean number of pairwise differences between haplotypes of 8.54 ± 4.01

  • That changes in sea ice extent and seasonality during the glacial-interglacial transition were not the key driver of East Antarctic Adélie penguin population expansion. This suggests that environmental drivers of population trends over thousands of years may differ to drivers over years or decades

Read more

Summary

Introduction

Long-term environmental changes are projected in the Southern Ocean and these are likely to have impacts for marine predators such as the Adélie penguin (Pygoscelis adeliae). Decadal monitoring studies have provided insight into the short-term environmental sensitivities of Adélie penguin populations, to sea ice changes. Trends in the extent and duration of sea ice around the Antarctic continent show high spatial heterogeneity [1, 2]. Over a 34 year monitoring period, sea ice extent decreased in the Bellingshausen and Amundsen Seas accompanied by a dramatic shortening of the sea ice season by 100 ± 31 days [1, 3]. Even within Antarctic regions there have been variations in the extent and duration of sea ice. For example, the East Antarctic region, defined here as between 30 and 150°E, has demonstrated considerably more complex trends in sea ice seasonality and extent than the rest of the continent [4, 5]. Since 1980, in some East Antarctic areas (between 95 and 110°E; and isolated pockets between 75 and 150°E), there has been a significant shortening of the sea ice season by up to 93 days [4]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call