Abstract

In the present study we measured the level of PDGF receptor expression by chicken myoblasts and the effect of the three different PDGF isoforms (AA, AB, BB) on DNA synthesis by myoblasts. We examined PDGF receptor expression and function on clonally derived myoblasts in order to eliminate contaminating fibroblasts which are present in myogenic cultures and which hind PDGF. Furthermore, since we have previously shown that fetal myoblasts are replaced with adult myoblasts during late chicken embryogenesis, we compared PDGF receptor expression and function on myoblasts from Embryonic Day 10 (E10, mid development) and from Embryonic Day 19 (E19, late development). We found that all myogenic clones from late embryos (E19) express many receptors for PDGF-BB, far fewer receptors for PDGF-AB, and even fewer, if any, receptors for PDGF-AA. Myoblast clones derived from E10 were more heterogeneous in their PDGF binding pattern ranging from clones similar to E19 clones to clones having very few PDGF binding sites. We also found that both PDGF-AB and PDGF-BB can promote DNA synthesis by clonally derived chicken myoblasts maintained in 2.5% fetal bovine serum whereas PDGF-AA has no detectable effect. Finally, we observed that primary myogenic cultures from E10 and E19 differ strikingly in levels of PDGF binding; E19 cultures bind much more PDGF than do E10 cultures. We conclude that PDGF can enhance the proliferation of chicken myoblasts and that myoblasts responsive to PDGF are more frequent in late than in mid stages of development. We propose that PDGF may be a modulator of myogenesis of adult but not fetal myoblasts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.