Abstract

To provide a theoretical basis for the prevention and treatment of atherosclerosis (AS), the current study aimed to investigate the mechanism underlying the effect of homocysteine (Hcy) on regulating the proliferation, migration and phenotypic transformation of vascular smooth muscle cells (VSMC) via sirtuin-1 (SIRT1)/signal transducer and activator of transcription 3 (STAT3) through Nedd4-like E3 ubiquitin-protein ligase WWP2 (WWP2). Here, Based on the establishment of ApoE-/- mouse models of high Hcy As and the model of Hcy stimulation of VSMC in vitro to observe the interaction between WWP2 and STAT3 and its effect on the proliferation, migration, and phenotypic transformation of Hcy-induced VSMC, which has not been previously reported. This study revealed that WWP2 could promote the proliferation, migration, and phenotype switch of Hcy-induced VSMC by up-regulating the phosphorylation of SIRT1/STAT3 signaling. Furthermore, Hcy might up-regulate WWP2 expression by inhibiting histone H3K27me3 expression through up-regulated UTX. These data suggest that WWP2 is a novel and important regulator of Hcy-induced VSMC proliferation, migration, and phenotypic transformation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call