Abstract

There are many similarities between embryonic development and tumorigenesis, and gene expression profiles show that certain correlations exist between the gene signature during development and the clinical phenotypes of different cancers. Our group previously reported the gene expression profiles of human lung development, and the expression of one group of proliferation‐related genes (PTN1 genes) steadily decreased during lung development. Here, we examined the prognostic value of PTN1 genes in 5 independent lung adenocarcinoma (ADC) and 5 lung independent squamous cell carcinoma (SCC) microarray datasets and found that the expression levels of PTN1 genes were associated with survival in lung ADC but not lung SCC. All of the lung ADC datasets contained a set of highly correlated genes from PTN1 genes, but the lung SCC datasets had no similar set of genes. We identified 63 unique core genes from the PTN1 genes in the 5 lung ADC datasets: 17 of these core genes appeared in at least 4 of the lung ADC datasets, and the 17 corresponding proteins clearly interacted more strongly with each other in lung ADC than in lung SCC. Moreover, 16 of the 17 core genes play major roles in the G2/M phase of the cell cycle. These data indicate that proliferation‐related genes in lung development have a significant prognostic value for lung ADC; the synergistic effects of the 17 core genes play an important role in lung ADC prognosis. These genes may have significant clinical implications for the treatment and prognosis of lung ADC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call