Abstract

Blood vessels play a critical role in regulating neural stem cell proliferation and migration. We show here that blood vessels became progressively aligned in the direction of the rostral migratory stream (RMS) from embryonic day 14 to postnatal day 4. Dividing cells revealed by phosphohistone H3+ immunoreactivity were statistically closer to isolectin B4+ blood vessels than predicted by chance in the emerging RMS. The close proximity of blood vessels and H3+ cells was consistent regardless of the age of the RMS and was strikingly similar to the embryonic cerebral cortex. In contrast to the adult RMS, we found no evidence for preferential juxtaposition of migratory doublecortin-positive neuroblasts and vasculature in the neonatal RMS. Our work provides an important framework for understanding the precise mechanism behind regulation of proliferation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.