Abstract

Ultrasonic-standing-wave (USW) technology has potential to become a standard method for gentle and contactless cell handling in microfluidic chips. We investigate the viability of adherent cells exposed to USWs by studying the proliferation rate of recultured cells following ultrasonic trapping and aggregation of low cell numbers in a microfluidic chip. The cells form 2-D aggregates inside the chip and the aggregates are held against a continuous flow of cell culture medium perpendicular to the propagation direction of the standing wave. No deviations in the doubling time from expected values (24 to 48 h) were observed for COS-7 cells held in the trap at acoustic pressure amplitudes up to 0.85 MPa and for times ranging between 30 and 75 min. Thus, the results demonstrate the potential of ultrasonic standing waves as a tool for gentle manipulation of low cell numbers in microfluidic systems. (E-mail: jessica.hultstrom@biox.kth.se)

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call