Abstract

In the central nervous system (CNS), giving rise to the diversity and the complexity of neurons is the spatial and temporal differentiation of neural stem cells and/or neural precursors. Here, we investigated the role of Jagged-mediated Notch signaling in the maintenance and differentiation of progenitor cells during late neurogenesis by analyzing the expression patterns of zebrafish jagged homologues, and by injecting their morpholinos. Expression of both jagged2 and jagged1b mRNA in the CNS suggested that they might be involved in control of differentiating neural progenitors in which they are involved later in development. In Jagged2 and Jagged1b knock-down embryos, the overall rate of cell division dramatically decreased, and the ectopic VeMe neurons were generated. The results suggest that Jagged-Notch signaling plays a critical role in the maintenance of proliferating neural precursors, and that the generation of late-born neurons, especially VeMe neurons, is regulated by the interplay between Jagged2 and Jagged1b.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.