Abstract

The electrical conduction of isomers of anthracene molecule attached between two semi-infinite gold electrodes was simulated using extended Huckel theory (EHT)-based on semi-empirical model in this research work. The electron transport parameters were examined in two epochs by buffering anthracene and its isomer phenanthrene alternatively between gold electrodes using sulphur as an alligator clip, under variegated bias voltages. Differential NDR effect was observed in both the cases but phenanthrene exhibited more linear I–V curve than its counterpart, anthracene. The simulated results discovered phenanthrene as a better candidate than anthracene towards contributing to electrical conduction in molecular junctions. Phenanthrene reported maximum conductance of 0.74G0 whereas anthracene exhibited 0.03[Formula: see text]G0 at 0.8[Formula: see text]V.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.