Abstract

Abstract The hormone prolactin (PRL) contributes to the pathogenesis of breast cancer in part through its activation of Janus-activated kinase 2 (Jak2)/signal transducer and activator of transcription 5 (Stat5), a PRL receptor (PRLr)–associated pathway dependent on cross-talk signaling from integrins. It remains unclear, however, how this cross-talk is mediated. Following PRL stimulation, we show that a complex between the transmembrane glycoprotein signal regulatory protein-α (SIRPα) and the PRLr, β1 integrin, and Jak2 in estrogen receptor–positive (ER+) and ER− breast cancer cells is formed. Overexpression of SIRPα in the absence of collagen 1 significantly decreased PRL-induced gene expression, phosphorylation of PRLr-associated signaling proteins, and PRL-stimulated proliferation and soft agar colony formation. In contrast, overexpression of SIRPα in the presence of collagen 1 increased PRL-induced gene expression; phosphorylation of Jak2, Stat5, and Erk; and PRL-stimulated cell growth. Interestingly, overexpression of a tyrosine-deficient SIRPα (SIRPα-4YF) prevented the signaling and phenotypic effects mediated by wild-type SIRPα. Furthermore, overexpression of a phosphatase-defective mutant of Shp-2 or pharmacologic inhibition of Shp-2 produced effects comparable with that of SIRPα-4YF. However, the tyrosine phosphorylation of SIRPα was unaffected in the presence or absence of collagen 1. These data suggest that SIRPα modulates PRLr-associated signaling as a function of integrin occupancy predominantly through the alteration of Shp-2 activity. This PRLr-SIRPα-integrin complex may therefore provide a basis for integrin-PRLr cross-talk and contribute to the biology of breast cancer. Mol Cancer Res; 8(10); 1413–24. ©2010 AACR.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.