Abstract
The zinc transporter ZnT2 imports zinc into secretory vesicles and regulates zinc export from the mammary epithelial cell. Mutations in ZnT2 substantially impair zinc secretion into milk. The lactogenic hormone prolactin (PRL) transcriptionally increases ZnT2 expression through the Jak2/STAT5 signaling pathway, increasing zinc accumulation in secretory vesicles and zinc secretion. Herein, we report that PRL post-translationally stimulated ZnT2 ubiquitination, which altered ZnT2 trafficking and augmented vesicular zinc accumulation and secretion from mammary epithelial cells in a transient manner. Ubiquitination then down-regulated zinc secretion by stimulating degradation of ZnT2. Mutagenesis of two N-terminal lysine residues (K4R and K6R) inhibited ZnT2 ubiquitination, vesicular zinc accumulation and secretion, and protein degradation. These findings establish that PRL post-translationally regulates ZnT2-mediated zinc secretion in a multifactorial manner, first by enhancing zinc accumulation in vesicles to transiently enhance zinc secretion and then by activating ubiquitin-dependent ZnT2 degradation. This provides insight into novel mechanisms through which ZnT2 and zinc transport is tightly regulated in mammary epithelial cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.