Abstract

The close association between rheumatoid arthritis (RA), sex, reproductive state, and stress has long linked prolactin (PRL) to disease progression. PRL has both proinflammatory and anti-inflammatory outcomes in RA, but responsible mechanisms are not understood. Here, we show that PRL modifies in an opposite manner the proinflammatory actions of IL-1β and TNF-α in mouse synovial fibroblasts (SF) in culture. Both IL-1β and TNF-α upregulated the metabolic activity and the expression of proinflammatory factors (Il1b, Inos, and Il6) via the activation of the NF-κB signaling pathway. However, IL-1β increased and TNF-α decreased the levels of the long PRL receptor isoform in association with dual actions of PRL on SF inflammatory response. PRL reduced the proinflammatory effect and activation of NF-κB by IL-1β but increased TNF-α-induced inflammation and NF-κB signaling. The double-faceted role of PRL against the two cytokines manifested also in vivo. IL-1β or TNF-α with or without PRL were injected into the knee joints of healthy mice and joint inflammation was monitored after 24 hours. IL-1β and TNF-α increased the joint expression of proinflammatory factors and the infiltration of immune cells. PRL prevented the actions of IL-1β but was either inactive or further increased the proinflammatory effect of TNF-α. We conclude that PRL exerts opposite actions on joint inflammation in males and females that depend on specific proinflammatory cytokines, the level of the PRL receptor, and the activation of NF-κB signaling. Dual actions of PRL may help balance joint inflammation in RA and provide insights for development of new treatments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.