Abstract

Previous work has shown systemic knockdown of the long form prolactin receptor (LFPRLR) in vivo markedly reduced metastasis in mouse models of breast cancer, but whether this translated to prolonged survival was unknown. Here we show that LFPRLR knockdown in the highly metastatic, immunocompetent 4T1 model prolonged survival and reduced recruitment of T regulatory cells (Tregs) to the tumor through effects on the production of CCL17. For the Tregs still recruited to the primary tumor, LFPRLR knockdown both directly and indirectly reduced their ability to promote tumor parenchymal epithelial to mesenchymal transition. Importantly, effects of prolactin on expression of mesenchymal genes by the tumor parenchyma were very different in the absence and presence of Tregs. While systemic knockdown of the LFPRLR downregulated transcripts important for immune synapse function in the remaining tumor Tregs, splenic Tregs seemed unaffected by LFPRLR knockdown, as demonstrated by their continued ability to suppress anti-CD3/CD28-stimulated effector cell proliferation at 1–5 months. These results demonstrate that knockdown of the LFPRLR achieves intra-tumor immunotherapeutic effects and suggest this occurs with reduced likelihood of peripheral inflammatory/autoimmune sequelae.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.