Abstract

Identification of the signal transduction pathways used by PRL is essential for understanding the role of PRL receptors in growth and differentiation processes. Early cellular mediators of PRL receptor activation include tyrosine kinases of the Janus kinase (JAK) and SRC families, with rapid nuclear signaling via tyrosine phosphorylated signal transducers and activators of transcription. In the present study we provide the first demonstration of PRL-induced activation of Ras, an oncogenic protein that supports an alternative signaling route from the membrane to the nucleus. PRL stimulated Ras in rat Nb2-SP lymphoma cells, as detected by a 2.0-fold increase in the GTP-bound state of the molecule (P < 0.01). This activation was associated with marked tyrosine phosphorylation and increased membrane association of the 52-kilodalton form of SHC. Moreover, PRL induced binding of SHC to growth factor receptor bound 2 and the guanine-nucleotide exchange factor son of sevenless, a common method used by growth factor receptors to activate Ras. In contrast, no apparent regulation by PRL of Ras via VAV or p120 Ras-guanosine triphosphatase-activating protein was detected, based upon an absence of PRL-inducible tyrosine phosphorylation of these proteins. Collectively, these results provide a molecular bridge between activation of PRL receptor-associated tyrosine kinases and subsequent stimulation of the serine/threonine kinase Raf-1, an established Ras target that was recently shown to be activated by PRL in Nb2 cells. We conclude that PRL is able to activate Ras via recruitment of the signaling proteins SHC, growth factor receptor bound 2, and son of sevenless in Nb2 cells. Moreover, PRL induced tyrosine phosphorylation of SHC in two of three PRL-responsive human breast cancer cell lines, suggesting that SHC-mediated Ras activation is a commonly used signaling strategy by PRL.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.