Abstract

Cyclooxygenase-2 (COX-2) is a key enzyme which catalyzes the conversion of arachidonic acid (AA) into prostaglandins (PGs). It plays an important role in pathophysiological processes, such as tumorigenesis, angiogenesis, inflammation and tumor cell drug resistance. Therefore, COX-2 has been viewed as an important target for cancer therapy. The preparation of COX-2 protein is an important initial step for the subsequent development of COX-2 inhibitors. In this study, we report a strategy to heterologously express truncated human COX-2 (trCOX-2) in Escherichia coli (E. coli) BL21(DE3) host cells. Following denaturation, purification and renaturation, we successfully obtained enzymatically active trCOX-2 containing 257 residues of the C-terminus. Homology modeling and molecular docking analyses revealed that trCOX-2 retained the predicted 3D catalytic domain structure and AA could still bind to its hydrophobic groove. Western blot analysis and ELISA indicated that the trCOX-2 still retained its characteristic antigenicity and binding activity, while COX assays revealed that trCOX-2 maintained its enzyme activity. On the whole, in this study, we provided a novel method to isolate trCOX-2 possessing AA binding and catalytic activities. This study thus lays a foundation to facilitate further investigations of COX-2 and offers a valuable method with which to achieve the prokaryotic expression of a eukaryotic membrane protein.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.