Abstract

To understand the temporal and spatial variation of the prokaryotic community in the East Sea, their composition was determined by polymerase chain reaction (PCR)-denaturing gradient gel electrophoresis (DGGE)-sequencing techniques. The investigations were conducted twice annually in 2007 and 2009 in coastal and offshore stations. Prokaryotic abundance (PA), leucine incorporation rate, and other environmental parameters were also measured. By using the DGGE approach, we obtained 283 bacterial sequences and 160 archaeal sequences. The most frequently detected bacterial phylotypes during the investigations belonged to Alphaproteobacteria, Gammaproteobacteria, and Bacteroidetes. However, their relative compositions differed in time and space. Although Alphaproteobacteria and Bacteroidetes were the dominant groups in the surface water in May 2007 and in May and October 2007, Gammaproteobacteria was dominant in mesopelagic samples. However, Gammaproteobacteria was overwhelmingly dominant in most samples in August 2009. Although Deltaproteobacteria was rarely found as a dominant bacterial group, it occupied the highest fraction in a mesopelagic sample in October 2007. Epsilonproteobacteria also showed a similar trend, although its maximal dominance was found in a mesopelagic sample in August 2009. The archaeal community was dominated overwhelmingly by members of the Euryarchaeota in most of the investigations. However, Nitrosopumilales was dominant in aphotic samples in August 2009. Further, their spatiotemporal composition at the family level changed more dynamically in the East Sea. These temporal and spatial distributions of the prokaryotic community were influenced mainly by seawater temperature and depth in the East Sea.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call