Abstract

We present a recently developed projector quantum Monte Carlo method for calculations of electronic structure in systems with spin-orbit interactions. The method solves for many-body eigenstates in the presence of spin-orbit using the fixed-phase approximation. The trial wave function is built from two-component spinors and explicit Jastrow correlation factors while the core electrons are eliminated by relativistic effective core potentials with explicit spin-orbit terms. We apply this method to WO and W2 molecules that enables us to build multi-reference wave functions and analyze the impact of both electron correlations and the spin-orbit terms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.