Abstract
Abstract Recently, we developed a method for the study of holonomy properties of non-Riemannian Finsler manifolds and obtained that the holonomy group cannot be a compact Lie group if the Finsler manifold of dimension >2 has non-zero constant flag curvature. The purpose of this paper is to move further, exploring the holonomy properties of projectively flat Finsler manifolds of non-zero constant flag curvature. We prove in particular that projectively flat Randers and Bryant–Shen manifolds of non-zero constant flag curvature have infinite dimensional holonomy group.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.