Abstract
In the equation of motion approach to the two-time Green's functions, conventional Tyablikov-type truncation of the chain of equations is rather arbitrary and apt to violate the analytical structure of Green's functions. Here, we propose a practical way to truncate the equations of motion using operator projection. The partial projection approximation is introduced to evaluate the Liouville matrix. It guarantees the causality of Green's functions, fulfills the time translation invariance and the particle-hole symmetry, and is easy to implement in a computer. To benchmark this method, we study the Anderson impurity model using the operator basis at the level of Lacroix approximation. Improvement over conventional Lacroix approximation is observed. The distribution of Kondo screening in the energy space is studied using this method.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.