Abstract

A projective moving average {X t , t ∈ ℤ} is a Bernoulli shift written as a backward martingale transform of the innovation sequence. We introduce a new class of nonlinear stochastic equations for projective moving averages, termed projective equations, involving a (nonlinear) kernel Q and a linear combination of projections of X t on ‘intermediate’ lagged innovation subspaces with given coefficients α i and β i,j . The class of such equations includes usual moving average processes and the Volterra series of the LARCH model. Solvability of projective equations is obtained using a recursive equality for projections of the solution X t . We show that, under certain conditions on Q, α i , and β i,j , this solution exhibits covariance and distributional long memory, with fractional Brownian motion as the limit of the corresponding partial sums process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.