Abstract
Based on the projective matrix spaces studied by B. Schwarz and A. Zaks, we study the notion of projective space associated to a C*-algebraA with a fixed projectionp. The resulting spaceP(p) admits a rich geometrical structure as a holomorphic manifold and a homogeneous reductive space of the invertible group ofA. Moreover, several metrics (chordal, spherical, pseudo-chordal, non-Euclidean-in Schwarz-Zaks terminology) are considered, allowing a comparison amongP(p), the Grassmann manifold ofA and the space of positive elements which are unitary with respect to the bilinear form induced by the reflection ε=2p−1. Among several metrical results, we prove that geodesics are unique and of minimal length when measured with the spherical and non-Euclidean metrics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.