Abstract

The problem of projective reconstruction by minimization of the 2D reprojection error in multiple images is considered. Although bundle adjustment techniques can be used to minimize the 2D reprojection error, these methods being based on nonlinear optimization algorithms require a good starting point. Quasi-linear algorithms with better global convergence properties can be used to generate an initial solution before submitting it to bundle adjustment for refinement. In this paper, we propose a factorization-based method to integrate the initial search as well as the bundle adjustment into a single algorithm consisting of a sequence of weighted least-squares problems, in which a control parameter is initially set to a relaxed state to allow the search of a good initial solution, and subsequently tightened up to force the final solution to approach a minimum point of the 2D reprojection error. The proposed algorithm is guaranteed to converge. Our method readily handles images with missing points.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.