Abstract

We present the list of maximal projective plane curves containing conics and those which are arrangements of conics. The number of rational points and the corresponding polynomials are given. The third highest number of points of projective curves of degree d over a finite field Fq (d < [q/3]) is associated only to some linear curves. We show that for q/2 + 2 < d < q, this is no longer the case: the third highest number of points can also be obtained by some curves containing a conic. Throughout this work, we obtain some bounds concerning the number of Fq-points of curves with linear, conic and cubic factors. these bounds apply (not sharply) to irreducible curves

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.