Abstract

AbstractLet ϵ be an ample vector bundle of rank r ≥ 2 on a smooth complex projective variety X of dimension n such that there exists a global section of ϵ whose zero locus Z is a smooth subvariety of dimension n-r ≥ 2 of X. Let H be an ample line bundle on X such that the restriction HZ of H to Z is very ample. Triplets (X, ϵ, H) with g(Z, HZ) = 3 are classified, where g(Z, HZ) is the sectional genus of (Z, HZ).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.