Abstract
A treatment of induced transformations of measures and measurable functions is presented. Given a diagram $\varphi :G \to H$ in the category of locally compact groups and continuous proper surjective group homomorphisms, functors are produced which on objects are given by $G \to {L^2}(G),{L^1}(G)$, $M(G),W(G)$, denoting, resp., the ${L^2}$-space, ${L^1}$-algebra, measure algebra, and von Neu mann algebra generated by left regular representation of ${L^1}$ on ${L^2}$. All functors but but the second are shown to preserve projective limits; by example, the second is shown not to do so. The category of Hilbert spaces and linear transformations of norm $\leqslant 1$ is shown to have projective limits; some propositions on such limits are given. Also given is a type and factor characterization of projective limits in the category of ${W^ \ast }$-algebras and surjective normal $\ast$-algebra homomorphisms.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.