Abstract
Starting from a complex manifold S with a real-analytic c-projective structure whose curvature has type (1,1), and a complex line bundle L with a connection whose curvature has type (1,1), we construct the twistor space Z of a quaternionic manifold M with a quaternionic circle action which contains S as a totally complex submanifold fixed by the action. This extends a construction of hypercomplex manifolds, including hyperkaehler metrics on cotangent bundles, obtained independently by B. Feix and D. Kaledin. When S is a Riemann surface, M is a self-dual conformal 4-manifold, and the quotient of M by the circle action is an Einstein-Weyl manifold with an asymptotically hyperbolic end, and our construction coincides with a construction presented by the first author in a previous paper. The extension also applies to quaternionic Kaehler manifolds with circle actions, as studied by A. Haydys and N. Hitchin.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.