Abstract

The aim of the present work is to develop a dualization of the Fraïssé limit construction from model theory and to indicate its surprising connections with the pseudo-arc. As corollaries of general results on the dual Fraïssé limits, we obtain Mioduszewski’s theorem on surjective universality of the pseudo-arc among chainable continua and a theorem on projective homogeneity of the pseudo-arc (which generalizes a result of Lewis and Smith on density of homeomorphisms of the pseudo-arc among surjective continuous maps from the pseudo-arc to itself). We also get a new characterization of the pseudo-arc via the projective homogeneity property.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.