Abstract
We give a criterion for the projectivisation of a reflexive sheaf on a klt space to be induced by a projective representation of the fundamental group of the smooth locus. This criterion is then applied to give a characterisation of finite quotients of projective spaces and Abelian varieties byQ\mathbb {Q}-Chern class (in)equalities and a suitable stability condition. This stability condition is formulated in terms of a naturally defined extension of the tangent sheaf by the structure sheaf. We further examine cases in which this stability condition is satisfied, comparing it to K-semistability and related notions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.