Abstract

A key component of computer- assisted surgery systems is the accurate and robust registration of preoperative planning data with intraoperative sensor data. In laparoscopic surgery, this image-based registration remains challenging due to soft tissue deformations. This paper presents a novel approach for biomechanical soft tissue registration of preoperative CT data with stereo endoscopic image data. The proposed method consists of two registrations steps. First, we use a 3D surface mosaic from partial surfaces reconstructed from stereo endoscopic images to initially align the biomechanical model with the intraoperative position and shape of the organ. After this initialization, the biomechanical model is projected onto newly captured surfaces, resulting in displacement boundary conditions, which in turn are used to update the biomechanical model. The method is evaluated in silico, using a human liver model, and in vivo, using porcine data. The quantitative in silico data shows a stable behaviour of the biomechanical model and root-mean-square deviation of volume vertices of under 3mm with adjusted biomechanical parameters. This work contributes a fully automatic featureless non-rigid registration approach. The results of the in silico and in vivo experiments suggest that our method is able to handle dynamic deformations during surgery. Additional experiments, especially regarding human tissue behaviour, are an important next step towards clinical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.