Abstract

Hydropower accounts for about 20% of the worldwide electrical power production. In mountainous regions this ratio is significantly higher. In this study we present how future projected climatic forcing, as described in regional climate models (RCMs), will affect water resources and subsequently hydropower production in downstream hydropower plants in a glacierized alpine valley (Vispa valley, Switzerland, 778 km2). In order to estimate future runoff generation and hydropower production, we used error‐corrected and downscaled climate scenarios from regional climate models (RCMs) as well as glacier retreat projections from a dynamic glacier model and coupled them to a physically based hydrological model. Furthermore, we implemented all relevant hydropower operational rules in the hydrological model to estimate future hydropower production based on the runoff projections. The uncertainty of each modeling component (climate projections, glacier retreat, and hydrological projection) and the resulting propagation of uncertainty to the projected future water availability for energy production were assessed using an analysis of variance. While the uncertainty of the projections is considerable, the consistent trends observed in all projections indicate significant changes to the current situation. The model results indicate that future melt‐ and rainfall‐runoff will increase during spring but decline during summer. The study concludes by outlining the most relevant expected changes for hydropower operations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.