Abstract
Unit recordings were made in the superior colliculus of cats anesthetized with chloralose and with Pentothal. Electrical stimulation of extraocular muscle afferents and neck muscle afferents excited more units in the superior colliculus than did a variety of moving and stationary visual stimuli. Units responding to neck muscle afferent stimulation fell into three populations; one population firing with a short latency and following stimulus presentation up to 1/s, a second population with a long latency and following stimulus presentation at frequencies lower than 15/min, and a third population exhibiting paired firing. The latencies and firing patterns of the third population combined the characteristics of each of the first two patterns. It is suggested that these characteristics of unit discharges stem from the existence of two pathways from neck muscle afferents to the superior colliculus. The projection is predominantly bilateral. Units responding to neck muscle afferent stimulation are distributed throughout the superior colliculus on the basis of their latencies. Long-latency responses predominate in the superficial layers of the superior colliculus and short-latency responses, while more common in the intermediate and deep layers, predominate in the tegmentum. Extraocular muscle afferent projections to the superior colliculus constitute the single richest projection found in these experiments. While the response patterns and latencies are similar to those of the neck muscle afferents, long-latency responses are the most common and dominate in all collicular regions. Few units in the tegmentum could be excited by extraocular muscle afferents. Both extraocular muscle and neck muscle afferents show considerable convergence with one another and with retinal afferents within the superior colliculus. Cells of origin of the tectospinal tract were identified within the superior colliculus and tegmentum by antidromic excitation from the upper cervical cord. These cells were distributed predominantly within the intermediate and deep layers of the superior colliculus, and sparsely in the superficial layers and tegmentum. Almost 50% of the cells of origin of the tectospinal tract receive a convergent input from extraocular muscle and neck muscle afferents and from the retina. About 30% of the cells were inexcitable to the stimuli employed in these experiments. The significance of these projections is discussed with respect to superior collicular function in the cat and i
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.