Abstract

The Fourier analytic approach to sections of convex bodies has recently been developed and has led to several results, including a complete analytic solution to the Busemann-Petty problem, characterizations of intersection bodies, extremal sections ofl p-balls. In this article, we extend this approach to projections of convex bodies and show that the projection counterparts of the results mentioned above can be proved using similar methods. In particular, we present a Fourier analytic proof of the recent result of Barthe and Naor on extremal projections ofl p-balls, and give a Fourier analytic solution to Shephard’s problem, originally solved by Petty and Schneider and asking whether symmetric convex bodies with smaller hyperplane projections necessarily have smaller volume. The proofs are based on a formula expressing the volume of hyperplane projections in terms of the Fourier transform of the curvature function.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.