Abstract

A synaptic algebra is an abstract version of the partially ordered Jordan algebra of all bounded Hermitian operators on a Hilbert space. We review the basic features of a synaptic algebra and then focus on the interaction between a synaptic algebra and its orthomodular lattice of projections. Each element in a synaptic algebra determines and is determined by a one-parameter family of projections—its spectral resolution. We observe that a synaptic algebra is commutative if and only if its projection lattice is boolean, and we prove that any commutative synaptic algebra is isomorphic to a subalgebra of the Banach algebra of all continuous functions on the Stone space of its boolean algebra of projections. We study the so-called range-closed elements of a synaptic algebra, prove that (von Neumann) regular elements are range-closed, relate certain range-closed elements to modular pairs of projections, show that the projections in a synaptic algebra form an M-symmetric orthomodular lattice, and give several sufficient conditions for modularity of the projection lattice.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call